Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

نویسندگان

  • Shaowu Lu
  • Xiaoqi Tang
  • Bao Song
چکیده

To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Novel Unified Control Method of Induction and Permanent Magnet Synchronous Motors

Many control schemes have been proposed for induction motor and permanent magnet synchronous motor control, which are almost highly complex and non-linear. Also, a simple and efficient method for unified control of the electric moto are rarely investigated. In this paper, a novel control method based on rotor flux orientation is proposed. The novelties of proposed method are elimination of q-ax...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

Adaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition

Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...

متن کامل

Optimal Shaping of Non-Conventional Permanent Magnet Geometries for Synchronous Motors via Surrogate Modeling and Multi-Objective Optimization Approach

A methodology is proposed for optimal shaping of permanent magnets with non-conventional and complex geometries, used in synchronous motors. The algorithm includes artificial neural network-based surrogate model and multi-objective search based optimization method that will lead to Pareto front solutions. An interior permanent magnet topology with crescent-shaped magnets is also introduced as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012